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Do we recognize common objects by parts, or as wholes? Holistic
recognition would be efficient, yet people detect a grating of light
and dark stripes by parts. Thus efficiency falls as the number of
stripes increases, in inverse proportion, as explained by prob-
ability summation among independent feature detectors1. It is
inefficient to detect correlated components independently. But
gratings are uncommon artificial stimuli that may fail to tap the
full power of visual object recognition. Familiar objects become
special as people become expert at judging them2,3, possibly
because the processing becomes more holistic. Letters and
words were designed to be easily recognized, and, through a
lifetime of reading, our visual system presumably has adapted to
do this as well as it possibly can. Here we show that in identifying
familiar English words, even the five most common three-letter
words, observers have the handicap predicted by recognition by
parts: a word is unreadable unless its letters are separately
identifiable. Efficiency is inversely proportional to word length,
independent of how many possible words (5, 26 or thousands)
the test word is drawn from. Human performance never exceeds
that attainable by strictly letter- or feature-based models. Thus,
everything seen is a pattern of features. Despite our virtuosity at
recognizing patterns and our expertise from reading a billion
letters, we never learn to see a word as a feature; our efficiency
is limited by the bottleneck of having to rigorously and indepen-
dently detect simple features.

The role of components in object recognition is still mysterious4–7.
For most objects we don’t even know what the components are, but
we do know that words are made of letters. Is a familiar word
recognized as an image, or as a combination of individually
recognized letters? Despite a century of careful study8–16, it has
never been noted that these two alternatives predict very different
thresholds for identifying words. Once we have defined a few terms,
you can test the predictions with your own eyes.

The strength of visual signals is traditionally specified by ‘con-
trast’, which here is the ratio of the luminance increment of the letter
or word to the background luminance. However, for ideal-observer
analysis it is helpful to specify ‘contrast energy’, which for a letter or
a word is the product of squared contrast and ‘ink’ area. In general,
contrast energy is the integral of the squared signal contrast over the
extent of the stimulus. Energy matters: mathematical work on radar
in the 1950s proved that the energy of a known signal completely
determines its detectability in white noise17. ‘Threshold’, the border
between seeing and not seeing, is defined here as the contrast or
energy required by the observer to correctly identify the letter or
word 64% of the time.

In Fig. 1a, the two lines of faint text have the same overall contrast
energy, but differ in the way that the energy is distributed. To
optimize recognition by parts, the first line gives each letter the same
energy. To optimize recognition as wholes, the second line gives each
word the same energy. Recognition by parts predicts that the longer
words in the second line will be illegible, as you see, because there
isn’t enough energy per letter. Recognition as wholes predicts that all
words in the second line will be equally legible, contrary to what you
see. Figure 1b shows the predictions for your word threshold on
blank and noisy backgrounds. The same analysis applies to both
backgrounds because the observer effectively adds his or her
intrinsic visual noise to the display18.

Our recognition-as-wholes predictions are based on the ideal
observer, which, given the stimulus and its statistics, achieves the
best possible expected performance by choosing the most probable
letter or word17,18. We can assess human performance on an absolute
scale by defining ‘efficiency’ as the ratio of the ideal’s threshold
energy to the human observer’s: the fraction of the energy used by

Figure 1 By letter or by word? a, Both lines of the quotation have the same total contrast

energy. In the first, the energy is divided equally among the letters. In the second, the

energy is divided equally among the words, regardless of length. In principle, at a given

noise level a pattern’s detectability depends only on its energy, but in the second quotation

the short words pop out and the long words disappear. This word-length effect shows that

human readers cannot efficiently integrate the energy across a whole word. (The

quotation reads ‘In the beginning was the Word … And the light

shineth in darkness’.) b, Two predictions for the word threshold. The left column

shows a letter at threshold on a uniform white background (top row) and on a noisy

background (bottom row). They may take a minute to appear. The middle column shows a

5-letter word at the same energy (1/
p

5 the contrast), which is the threshold predicted by

recognition as wholes, and the right column shows a word at 5 times the energy (the same

contrast), which is the threshold predicted by recognition by parts. The words in the

middle column would be identifiable if you could see words as efficiently as you see

letters. (The first line reads ‘p’, ‘these’, ‘being’, and the second reads ‘k’,

‘?????’, ‘while’, where the identity of the middle word remains undisclosed.) Note:

The faint lettering on a white background is at the limits of what can be rendered on the

printed page. The PDF of this letter prints the figure successfully on most modern printers,

especially colour printers. If in doubt, readers are urged to refer to a more robust version of

Fig. 1b available as Supplementary Information, which accommodates variations in

printers’ rendering and readers’ sensitivity.
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the observer that is ideally required to account for the observer’s
measured performance18,19. This strips away the intrinsic difficulty
of the task, exposing a pure measure of human ability.

Our argument begins with our finding that human efficiency for
word identification is inversely proportional to word length, inde-
pendent of the number of possible words, as predicted by recog-
nition by parts with suppression of weak signals, ‘squelching’. Then
we show that, notwithstanding the well known ‘word superiority
effect’, human word identification never exceeds the accuracy
attainable by strictly letter-based models. Related work indicates
that letters are made of features. Finally, we conclude that visual
recognition of even the most familiar objects is severely restricted by
a first stage of independent feature detectors that squelch and each
integrate no more than a letter, and probably much less.

The word-length effect, for words 2–16 letters long, is shown in
Fig. 2 for two observers. Figure 2a shows that their threshold energy
is proportional to word length, whereas the ideal observer’s

threshold is practically independent of word length. Figure 2b
shows that efficiency, the ratio of ideal and human thresholds, is
inversely proportional to word length. Efficiency for n-letter words
is 1/n that for single letters. This result is not surprising for longer
words, as observers take in only a modest number of letters in a
glimpse, perhaps 4.5 (ref. 20), which predicts the reciprocal drop in
efficiency for longer words, as the ideal observer uses all the letters.
What is surprising and important about Fig. 2 is that the same slope
extends left to the shortest words, and even single letters. Thus, the
required energy per letter is independent of word length.

This is not merely a consequence of just size or contrast. Although
a word is bigger than a letter, and words and letters have the same
threshold contrast, the human limitation demonstrated in Figs 1
and 2 is neither an inefficiency for all large objects nor a fixed
threshold contrast that all objects must exceed to be seen. Increasing
letter size fivefold, to match the width of a word, reduces the letter’s
threshold contrast, in noise, fourfold21. Because seeing the large
letter requires only a fraction of the contrast required to see a
similar-width word, any explanation of the poor visibility of words
must penetrate past their size to consider their internal structure.
Our results indicate that, rather than directly recognizing complex
familiar objects, such as words, our visual system detects smaller
components—letters or perhaps features of letters—and only then
recognizes the object specified by these components. Nothing is seen
unless its components are detected22,23.

One might ask whether the human observer could reasonably be
expected to confine his or her word search to the 26 words used in
the test, as the ideal does. Our design minimized this concern by
using the 26 most common n-letter words, and displaying them as
the response alternatives in every trial. Identifying letters indepen-
dently (recognition by parts) is inefficient because the letters in a
word are correlated. That’s because the number of n-letter words, 26
in our experiment or thousands in real life, is a tiny fraction of the
number of possible strings, 26n. Still, one might worry that this
human inefficiency is an artefact of using only 26 words. We
addressed these concerns by measuring human and ideal thresholds
for identification of one of 2,213 five-letter words (the most
common 2,213), presenting each word at the same relative fre-
quency as it appears in print24, and found the same efficiency
(approximately 4%) as for the 26 most common. (These efficien-
cies, for experienced observers with Courier font, are slightly higher
than in Fig. 2, which is for new observers with Bookman font. The
100,000-trial experience, in various conditions, and the Courier
font both contribute to the £1.5 higher efficiency21.) Finding the
same efficiency means that human and ideal thresholds are affected
equally by word frequency. Thinking that perhaps only extremely
common words enjoy recognition as elementary visual patterns25,
we measured human and ideal thresholds for identifying the five
most common 3-letter words (the, and, was, for, his). The
least frequent of these words (his) is encountered 100 times in an
hour of reading, nearly 400,000 times in a decade of reading an hour
a day. Even so, the five most common 3-letter words yield practically
the same efficiency as the 26 most common (4.8% compared to
4.5%) and reciprocity holds: the efficiency for identifying the five
most common 3-letter words is 1/3 that for single letters: 4.8%/15%.
Changes in intrinsic task difficulty—5, 26 or 2,213 alternatives—
invalidate comparison of raw thresholds unless modelling assump-
tions are made, but efficiencies are always directly comparable.

The ideal observer chooses the best-matching template, using one
template for each possible word. The root mean square (r.m.s.)
difference between the stimulus and the template is a measure of the
likelihood that the stimulus is the template plus noise. To choose the
most probable word the ideal observer weighs each word’s like-
lihood by its frequency. Template matching integrates energy
efficiently over the extent of the template. If humans did template
matching, with accurate templates for words of every length, then
the slope in Fig. 2b would be zero, not 21. Figure 2 indicates the

Figure 2 The effect of word length. a, Threshold energy for identifying one of 26 words, as

a function of word length. The data at length 1 are for single letters. The ideal observer’s

thresholds (crosses) lie near the zero-slope line. The human observers’ thresholds (UP,

circles; JG, diamonds) lie near the unit-slope line. b, Efficiency (the ratio of ideal and

human thresholds) derived from a as a function of word length. The points are close to the

line with 21 slope: efficiency is inversely proportional to word length.
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absence of templates of more than one letter, as the energy beyond
one letter doesn’t reduce the required energy for the first letter.

The brain is well equipped to do template matching. A typical
neuron sums over 10,000 synapses, each with a different gain. Any
neuron that integrates over part of the visual field computes the
likelihood of the presence of a signal matching the neuron’s
sensitivity profile. Thus, neurons with very simple receptive fields
have been called “fly detectors”26. One can speculate that there
might be neurons (perhaps in brain area IT) that linearly integrate
over more complex receptive fields that match a face, letter or word,
but such neurons would allow the observer to attain much higher
efficiencies than found here, placing their existence in doubt.

In principle, identifying a letter independently requires the same
energy for that letter as would be required to identify the whole
word (if there are, as in Fig. 2, the same number of possible letters
and words). The fact that a word is unreadable by our observers
unless its letters are separately identifiable is evidence for recog-
nition by components; that is, identification of the word is mediated
by independent detection of components that are a letter or less. We
define ‘features’ as image components that are detected indepen-
dently, unaffected by the presence of other features. Independent
feature detection is a bottleneck, especially when feature thresholds
are high; complex objects will be visible only when the energy per
feature reaches threshold.

Our data indicate that there are no multi-letter features. Effi-
ciency for letters is independent of age after ten, only weakly
dependent on size and alphabet (English, Armenian, Devanagari
and Hebrew), and inversely proportional to complexity21. ‘Com-
plexity’ is a scale-invariant physical measure: perimeter squared
over ‘ink’ area21. The number of features in a letter may be
proportional to its complexity. It seems that in identifying letters,
observers use no feature more complex than the average letter in the
simplest alphabet tested21, about one-third the complexity of the
Bookman and Courier fonts used here. As letters and words are
designed to be legible, and the reader’s visual system presumably has
adapted itself to them as much as it can, we conclude that the feature
bottleneck is unavoidable. Objects are recognized by means of
independent detection of their component features, which are
much simpler (less complex) than a single Bookman letter.

The efficiency result—the reciprocal relation between efficiency
and number of components—is secure and assumption-free, but
how general is it? We extended it from obscure gratings1 to common
words. It also applies to letters if we suppose that complexity is
proportional to the number of features. But these stimuli were all at
threshold. Threshold stimuli are directly relevant to real-life reading
of highway signs, which are usually read at great distance as soon as
they become readable. Might ordinary reading, at high contrast, be
mediated by different mechanisms? That seems unlikely. Critical-
band masking studies have characterized the channels (feature
detectors) that mediate letter identification at threshold27. Experi-
ments at high supra-threshold contrasts, measuring the effect of
noise on reading rate, reveal the same channel tuning28.

We usually see things quite reliably or not at all, with a fairly
abrupt transition between the two. Indeed, the ‘psychometric
function’, the probability of seeing, rises much more steeply as a
function of contrast than predicted by theory of signal detectability
for an exactly known signal17. The steep psychometric function
means that weak signals are suppressed. Engineers call this ‘squelch-
ing’: in better walkie talkies, a nonlinear analog circuit turns down
the volume when the signal is weak relative to the background noise,
to cut out the hiss when no one is speaking. In the same way, human
vision squelches features, allowing them to pass only if they are well
above the noise. We call this ‘detecting rigorously’. It achieves
reliability at the expense of efficiency. The human visual system
has a vast number of feature detectors, each of which can raise a false
alarm, mistaking noise for signal. Squelching blocks the intrusion of
countless false features that would besiege us if weak features were

not suppressed. However, it impairs our ability to see more complex
objects, like words. In the limiting case, squelchers pass all signals
above a certain threshold contrast, and none below. Whether the
squelch is gradual or abrupt, it is, in effect, deciding whether or not a
signal is present and acting on that decision.

Discussions of letter and word recognition typically suppose
various stages in the recognition process: identification of features,
then letters, then the word14,29. One approach to modelling how an
observer performs a task is to specify just the first stage of proces-
sing, leaving subsequent stages unspecified. However, such models
must avoid the common mistake of specifying a transformation that
preserves all task-relevant information. Such a transformation can
always be undone by the subsequent unspecified stages, so it does
not constrain performance, making the model psychophysically
inconsequential and untestable. Proposing a first stage constrains
performance only to the extent that the stage discards task-relevant
information. In that spirit, when we assert that a part of a model, or
the brain, ‘makes a decision’, we mean not only that it passes that
decision on, but also that it discards (fails to pass on) the infor-
mation the decision is based on. Thus, we consider the idea that all
word and letter identifications are strictly letter-based; that is, they
depend on the visual stimulus solely through a stage that identifies
each letter independently and passes on only that identification,
discarding the rest of the stimulus information. We leave the later
stages, after letter identification, unspecified. Each decision is a
bottleneck.

Selfridge’s Pandemonium Model29 cascades row after row of
‘demons’ that compute the likelihood of features, then letters, and
then words, achieving perfect efficiency by not discarding any
choice-relevant information until the final shouting match. It is
an ideal observer. Similarly, the Interactive Activation Model14

computes each possible letter’s likelihood at each letter position,
and postpones the information-discarding shouting match until the
final response-selection stage. Presumably, given optimal weights
and extended to report whole words, it would be nearly ideal, so it
too would have similar energy thresholds for words and letters,
unlike what we report here for human observers.

It is a simple matter to calculate how accurately a word can be
identified by a strictly letter-based observer. The observer’s first
stage identifies the letters independently. These identifications are
tentative. To perform optimally, the observer, having the string of
tentatively identified letters, uses a historical table of his or her
single-letter confusion probabilities (identifying one letter as

Figure 3 Proportion correct in identifying a letter (filled symbols) or a 5-letter word (open

symbols) in noise as a function of contrast. Average energy per letter is indicated on the

upper x axis. This is for one human, WT (3,000 trials per point), and the ideal observer

(100,000 trials per point). Note that the human’s contrast thresholds (64% correct) for

letters and words are similar, whereas the ideal observer’s are very different. For each

observer, the dotted line is the best possible strictly letter-based word identification

performance, given the observer’s measured single-letter confusion probabilities (of

identifying each letter as another) at that contrast. (A second human observer, DM,

gave very similar results, not shown.) All curves are maximum-likelihood Weibull fits

(g ¼ 1/26)21.
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another) at that contrast to choose the most probable word from the
list of alternatives. (The ideal, described earlier, computes each
possible word’s likelihood based on the stimulus. Our letter-based
two-stage observer is not ideal, and must settle for likelihood based
on the independent letter identifications, rather than the stimulus
itself.)

The performance of this best-possible letter-based observer is
plotted as the dotted curves in Fig. 3. The left curve is based on the
ideal’s single-letter confusion probabilities at each contrast, and the
right curve is based on the human’s. Each dotted curve is the best
possible accuracy for strictly letter-based word identification by that
observer, given the observer’s measured letter performance. Note
that the human’s word performance (right dashed line) never
exceeds this letter-based bound, whereas the ideal’s word perform-
ance (left dashed line) far exceeds it. Thus, despite reading for
decades, a hundred million words21, our observers identify even the
most common words with an accuracy attainable through strictly
letter-based identification.

Humans squelch features. The ideal observer does not. Nor does
the two-stage model based on the ideal letter identifier. It is
inefficient to detect correlated components independently, and
this is exacerbated by squelching. We can calculate efficiency from
the threshold contrasts of the curves in Fig. 3 for lengths 1 (letter)
and 5 (word). Efficiency of the model, which doesn’t squelch, drops
as words grow longer. Efficiency of the human, who does squelch,
drops more, as the reciprocal of word length.

At first sight, our conclusion may seem incompatible with the
hundred-year-old ‘word superiority effect’, whereby a letter within a
word is recognized better than a letter presented in isolation or in a
scrambled word8–16. The word context improves letter identification
even when it provides no information that can distinguish between
the response alternatives. For example, coin versus join is easier
than c versus j. Thus, in Fig. 4, the proportion correct for words
(dashed line) is higher than that for letters (solid line). But is the
observed context effect big enough to prove that the internal letter
identifications are not independent of each other? No, it’s too small.
The human performance plotted in Fig. 4 is consistent with strictly
letter-based word identification. The dotted line shows how well the
observer would perform by first identifying the test letter as a … z,
and then choosing the more likely of the two response alternatives
(for example, ‘c’ or ‘j’) based on her own single-letter confusion
probabilities. This is the best possible strategy for an observer who is
strictly letter-based. This letter-based upper bound applies to both
letter and word conditions, and in fact is above both. The worse
human performance shows that the observer is not using the
optimal strategy, quite possibly because she doesn’t know her own

single-letter confusion probabilities and thus fails to choose the
most probable letter or word (c or j) given her tentative internal
letter identification (a … z). The strictly letter-based upper bound
is also above the word advantage found in other studies, which find
the proportion correct for letter identification to be 0.05–0.15
greater in a word context10–16. The word context (dashed line)
improves performance, bringing it closer although still not exceed-
ing the (dotted) upper bound. The slightly higher human perform-
ance in a word context (the word superiority effect) suggests that
observers more accurately incorporate their historical confusion
probabilities when reading words than when identifying letters,
which is consistent with the observation that observers perform
better if they attend to the entire word rather than just to the target
letter12. Perhaps years of fast reading have trained the second-stage
word-recognition process to learn the observer’s letter-confusion
probabilities, to more efficiently map strings of tentatively identified
letters to real words. Figure 4 shows that the 0.10 upward increase in
accuracy corresponds to a factor of £1.15 leftward reduction in
threshold contrast (£1.3 in energy). Thus, there are not one but two
effects, one small and one large. The word superiority effect
increases efficiency by a mere factor of £1.3. The word-length effect,
described here, is big, reducing efficiency by the word length, 45 for
a 5-letter word. Both effects are consistent with strictly letter-based
word identification.

In evaluating whether recognition is by parts or as wholes, we
took a ‘best of breed’ approach, considering the best possible
performance of models that conform to simple assumptions
about the observer’s internal processes. Our analysis has focused
on letters because they are obvious components of words. More
generally, the same approach may be applied to critically test any
conjecture that object recognition is mediated by independent
decisions about a specified set of features or components. The
components in objects are usually correlated, so object recognition
based on independent decisions about components is inefficient,
especially with squelching. Having to independently and rigorously
detect the components makes efficiency inversely proportional to
their number. A

Methods
Testing
In each trial the signal was one of 26 possible letters (a … z), or 26 possible words. The
word list for each length (2–16 letters), for example ‘of, to, in, …, pa’ for 2-letter words or
‘responsibilities, misunderstandings, characterization, …, aristocratically’
for 16-letter words, consisted of the 26 most common words of that length, excluding
words that are normally capitalized (such as ‘American’), words containing punctuation,
and nearly identical words24. The signal—a letter or word—was briefly presented (200 ms)
either on a blank 50 cd m22 gamma-corrected screen (for human observers) or in gaussian
noise (for both human and ideal observers). The blank screen and the noise had the same
mean luminance (unlike the two rows of Fig. 1b). The task was to identify the signal by
choosing one of the 26 signals, which were displayed for the human observer on an
immediately-following response screen. (Increasing the viewing time, as in the printed
demonstrations in Fig. 1, does not affect identification on the static noise background, but
does aid identification on a blank background, because detection is then limited by the
observer’s intrinsic visual noise18, which is dynamic. See also ref. 15.) The text was
rendered at 29 point in an off-screen image using the uniformly spaced TrueType
Courier font (Fig. 1b), except for Figs 1a and 2, for which we used the proportionally
spaced PostScript Adobe Bookman font. Efficiency of letter identification is slightly
higher using Courier than using Bookman21. In the noise conditions, independent zero-
mean gaussian samples, with standard deviation equal to 25% of the mean luminance,
were added to the pixels of the off-screen image. The off-screen image was then doubled in
size horizontally and vertically by pixel replication, and copied to the screen. The screen
displayed 31.3 pixels per degree at the 0.6 m viewing distance. The power spectral density
of the noise was N ¼ 1023.59 deg2. The typographic x-height of the displayed text was 0.83
deg (Courier) or 0.89 deg (Bookman).

Modelling
The results of the simulations at three contrasts were fit with a Weibull psychometric
function, which is displayed as the dotted curve. The 26 £ 26 table of probabilities of each
one-letter response to each one-letter signal is the observer’s letter-confusion matrix. The
simulation used 3,000-trial letter-confusion matrices measured for each observer at each
of three contrasts in noise. (For the ideal they were 100,000-trial matrices at four
contrasts.) To prevent bias due to correlated sampling errors between the confusion
matrices used to simulate the first and second stages of the model, each stage used an

Figure 4 The word superiority effect. Proportion correct as a function of contrast and

average energy per letter, for letters and words on a blank background. The dotted line

represents the upper bound for strictly letter-based word identification, based on the

observer’s measured confusion probabilities at three contrasts. Unlike Fig. 3, only two

response alternatives, differing by only one letter, were offered on each trial, for example,

‘coin’ versus ‘join’ or ‘c ’ versus ‘j ’. The word superiority is slight, no

greater than can be accounted for by strictly letter-based identification.
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independent 1,500- (or 50,000-) trial subset of the empirical letter-confusion counts. The
first stage receives a letter i 1 or a word i1; i2; i3; i4; i5 and independently emits a letter j 1 or a
letter at each position j1; j2; j3; j4; j5 with each letter probability specified by the 26 £ 26
confusion matrix P(j j i). The best-possible second stage chooses the most probable
5-letter word i1; i2; i3; i4; i5 given the independent first-stage letter identifications
j1; j2; j3; j4; j5; that is, it maximizes the posterior probability

Pði1; i2; i3; i4; i5 j j1; j2; j3; j4; j5Þ

¼
Pði1; i2; i3; i4; i5ÞPðj1 j i1ÞPðj2 j i2ÞPðj3 j i3ÞPðj4 j i4ÞPðj5 j i5Þ

i1 ;i2 ;i3 ;i4 ;i5

P
Pði1; i2; i3; i4; i5ÞPðj1 j i1ÞPðj2 j i2ÞPðj3 j i3ÞPðj4 j i4ÞPðj5 j i5Þ

where Pði1; i2; i3; i4; i5Þ is the prior probability of the word i1; i2; i3; i4; i5. Concerned that
the resulting 1,500 (3,000/2) trials per confusion matrix might not be enough, we
simulated the two-stage model based on 100, 1,000, 3,000, 33,000 and 100,000 trials of the
ideal observer. This revealed that the proportion correct is robust, only a few per cent lower
for simulations using confusion matrices based on 3,000/2 rather than on 100,000/2 trials.
Thus, our dotted curves in Figs 3 and 4 slightly underestimate the best-possible strictly
letter-based performance, making our conclusion slightly more secure: human
performance never clears the bar.

Word superiority
Following Reicher’s10 elegant design, we began with a list of 288 pairs of 4-letter words that
differed by only one letter within each pair. Equal numbers of words differed at each of the
four letter positions. Our list was derived from that of ref. 30, replacing 18 obscure words
(such as boll, lave, wile) by more common ones (ball, lake, mile). The observer was EG. In
the word-identification task the observer was shown a low-contrast word, randomly
selected from the list. Unlike our previous experiments, the response screen merely asked
the observer to select between the correct word and its mate, which differed in only one
letter position, as in ‘coin’ versus ‘join’. The letter-identification task drew from the
same word list, but left blank all but the differing letters in each pair (‘c ’ versus ‘j ’)
in both the stimulus and response screens. The ideal observer performs identically on both
tasks, because the non-differing letters are irrelevant to the choice, so the human observer’s
word superiority implies that here the human is identifying words slightly more efficiently
than letters. Thus, the word superiority effect is aptly named, but, as explained in the text,
is consistent with strictly letter-based word identification.
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Cystic fibrosis is caused by mutations in cystic fibrosis trans-
membrane conductance regulator (CFTR), an anion channel1.
Phosphorylation and ATP hydrolysis are generally believed to be
indispensable for activating CFTR2. Here we report phosphoryl-
ation- and ATP-independent activation of CFTR by cytoplasmic
glutamate that exclusively elicits Cl2, but not HCO3

2, conduc-
tance in the human sweat duct. We also report that the anion
selectivity of glutamate-activated CFTR is not intrinsically fixed,
but can undergo a dynamic shift to conduct HCO3

2 by a process
involving ATP hydrolysis. Duct cells from patients with DF508
mutant CFTR showed no glutamate/ATP activated Cl2 or HCO3

2

conductance. In contrast, duct cells from heterozygous patients
with R117H/DF508 mutant CFTR also lost most of the Cl2

conductance, yet retained significant HCO3
2 conductance.

Hence, not only does glutamate control neuronal ion channels,
as is well known, but it can also regulate anion conductance and
selectivity of CFTR in native epithelial cells. The loss of this
uniquely regulated HCO3

2 conductance is most probably respon-
sible for the more severe forms of cystic fibrosis pathology.

The molecular structure of CFTR is much more complicated than
most ion channels. CFTR combines a regulatory domain consisting
of numerous phosphorylation sites with two nucleotide-binding
domains capable of ATP hydrolysis3 flanked by six transmembrane
domains on each side4. Consistent with this structure, a consensus
has evolved that the phosphorylation by protein kinase A and
hydrolysis of ATP are essential for activating CFTR Cl2 channel2.
However, several discordant observations raised questions as to
whether these requirements are absolute. We previously reported
that CFTR Cl2 channels in the human sweat ducts are constitutively
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